Name:

CSCI 2824 - Discrete Structures Test 1

Grade: _____ /100

1. (10 points) For the following pair of propositions show whether P is logically equivalent to Q:

(a) $P = p \rightarrow q, Q = \neg p \lor q$

	p	q	$p \to q$	$\neg p \lor q$
	Т	Т	Т	Т
Solution:	Т	\mathbf{F}	F	F
	F	Т	Т	Т
	F	F	Т	Т
a				

Since the two columns have the same values, they are logically equivalent.

(b)
$$P = p \land q, Q = \neg q \rightarrow p.$$

Solution:

p	q	$p \wedge q$	$\neg q \to p$				
Т	Т	Т	Т				
Т	F	F	Т				
F	F	F	Т				
F	F	F	F				
Sinc	te our two highlighted columns differ these are not logically equivaler						

- 2. (20 points) For the following parts list each set that has the same cardinality as the given set, from the provided list of sets.
 - $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Z} \times \mathbb{Z}, \{1,3\}, \{a,7\}, \{1,2,4,5\}, \{1,2,3,4,5\}, \{1,\{2,3\},\{4\}\}, \{7,132,19,\{1\}\}$
 - (a) E the set of all even integers.

Solution: $\mathbb{N}, \mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$.

(b) [0,1] - all real numbers between 0 and 1, inclusive.

Solution: \mathbb{R}

(c) $\{a, b\}$

Solution: $\{1,3\}, \{a,7\}.$

(d) $\{7, 24, 5\}$

Solution: $\{1, \{2, 3\}, \{4\}\}.$

- 3. (10 points) Let A(x, y) be the propositional function x attended y's office hours and E(x) be the propositional function x is enrolled in a discrete mathematics course. Using these and our quantifiers turn the following statements into symbols that they are equivalent to.
 - (a) Brit attended someone's office hours.

Solution: Either $\exists x$ such that A(Brit, x) or $\exists x \exists y$ such that A(x, y) were acceptable here.

(b) Every discrete math student attended someone's office hours.

Solution: Either $\forall x$ such that $E(x), \exists y$ such that A(x,y) or $\forall x \exists y E(x) \rightarrow A(x,y)$.

4. (20 points) Prove that $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$ for all sets X and Y.

Solution: To show set equality we show containment both ways. If $A \in \mathcal{P}(X \cap Y)$ then $A \subseteq X \cap Y$ this means $A \subseteq X$ and $A \subseteq Y$. Since $A \subseteq X$, $A \in \mathcal{P}(X)$, since $A \subseteq Y$, $A \in \mathcal{P}(Y)$. Thus $A \in \mathcal{P}(X) \cap \mathcal{P}(Y)$. For the reverse direction: if $A \in \mathcal{P}(X) \cap \mathcal{P}(Y)$ then $A \in \mathcal{P}(X)$ so $A \subseteq X$ and we also have $A \in \mathcal{P}(Y)$ so $A \subseteq Y$. Thus $A \subseteq X \cap Y$ meaning that $A \in \mathcal{P}(X \cap Y)$.

5. (25 points) Prove that $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Solution: Proof by induction. Base case: n = 1: $1^2 = \frac{1(2)(3)}{6}$ IH: We assume the identity holds for n and show it holds for n + 1 that is we show: $1^2 + 2^2 + \dots + n^2 + (n + 1)^2 = \frac{(n + 1)(n + 2)(2n + 3)}{6}$ By the Inductive hypothesis:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^{2}}{6}$$

$$= \frac{(n+1)(n(2n+1)+6(n+1))}{6}$$

$$= \frac{(n+1)(2n^{2}+n+6n+6)}{6}$$

$$= \frac{(n+1)(2n^{2}+7n+6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$
This closes the induction.

6. (5 points) Define what it means that $f: X \to Y$ is a function.

Solution: $f : X \to Y$ is a function if for every $x \in X$ there is exactly one $y \in Y$ such that f(x) = y.

7. (10 points) For functions $f: Y \to Z$ and $g: X \to Y$ prove or disprove the following claim: If $f \circ g$ is onto then g is onto.

Solution: This is false. Choose $X = Z = \{1\}$ and $Y = \{1, 2\}$. Define $g : X \to Y$ by g(1) = 1 and define $f : Y \to Z$ by f(1) = 1, f(2) = 1. Then $f \circ g$ is onto since $f \circ g(1) = f(g(1)) = f(1) = 1$. But g is not onto.