CSCI 2824 - Discrete Structures Test 1 Review

- 1. Let the $U = \{1, 2, 3, ..., 10\}$ be a universal set and $A = \{1, 4, 7, 10\}$, $B = \{1, 2, 3, 4, 5\}$ and $C = \{2, 4, 6, 8\}$. List the elements of each following set:
 - (a) \overline{A}

Solution: $\overline{A} = \{2, 3, 5, 6, 8, 9\}$

(b) $B \cap C$

Solution: $B \cap C = \{2, 4\}$

(c) $\overline{B} \cap (C \setminus A)$

Solution: First $\overline{B} = \{6, 7, 8, 9, 10\}$ and $C \setminus A = \{2, 6, 8\}$. Thus $\overline{B} \cap (C \setminus A) = \{6, 8\}$

(d) $(A \cup B) \setminus (C \setminus B)$

Solution: First $A \cup B = \{1, 2, 3, 4, 5, 7, 10\}$ and $C \setminus B = \{6, 8\}$. Thus $(A \cup B) \setminus (C \setminus B) = \{1, 2, 3, 4, 5, 7, 10\}$

- 2. Determine the cardinality of the following sets:
 - (a) ∅

Solution: This is a homework 3 question.

(b) $\{\emptyset\}$

Solution: 1

(c) $\{a, bc, d\}$

Solution: 3

(d) $\{a, bc, d, \{a, bc, d\}\}$

Solution: 4

- 3. For the following questions determine if $A \subseteq B$ or not.
 - (a) $A = \{1, 2\}, B = \{3, 2, 1\}$

Solution: Yes.

(b) $A = \{1, 2\}, B = \{x : x^3 - 6x^2 + 11x = 6\}$

Solution: Yes, the roots of $x^3 - 6x^2 + 11x = 6$ are x = 1, 2, 3.

- (c) A = {x : x³ 2x² x + 2 = 0}, B = {x³ 6x² + 11x 6 = 0}
 Solution: No, -1 ∈ A since -1 2 + 1 + 2 = 0 but -1 ∉ B since -1 6 + 11 6 = -2.
 (d) A = {1, 2, 3, 4}, C = {5, 6, 7, 8}, B = {n : n ∈ A and n + m = 8 for some m ∈ C}
 Solution: We compute B = {1, 2, 3}. Thus A ∉ B.
- 4. For the following questions represent the following proposition symbolically using the following symbols:

p: There is a hurricaneq: It is raining

(a) There is no hurricane

Solution: $\neg p$.

(b) There is a hurricane, but it is not raining.

Solution: $p \land \neg q$.

(c) Either there is a hurricane or it is raining but there is no hurricane.

Solution: $p \lor q \land \neg p$

- 5. Determine the truth value of the following propositions:
 - (a) If 3 + 5 < 2 then 1 + 3 = 5

Solution: True, 3 + 5 > 2 so the proposition is vacuously true.

(b) 3+5 > 2 if and only if 1+3 = 4.

Solution: True, 3 + 5 > 2 and 1 + 3 = 4 are both true statements thus they have the same truth values.

6. Using the following statements write the following propositions in symbols:

p: You run 10 laps dailyq: You are healthyr: You take multi-vitamins

(a) If you run 10 laps daily, then you will be healthy.

Solution: $p \to q$.

(b) Taking multi-vitamins is sufficient for being healthy

Solution: $r \to q$.

(c) If you are healthy, then you run 10 laps daily or you do not take multi-vitamins.

Solution: $q \to (p \lor \neg r)$.

- 7. Given that P(x) denotes "x is an accountant" and Q(x) denotes "x owns a Porsche" write each statement symbolically.
 - (a) All accountants own Porsches

Solution: $\forall x P(x) \rightarrow Q(x)$

(b) Some accountant owns a Porsche

Solution: $\exists x P(x) \land Q(x)$.

(c) Someone who owns a Porsche is an accountant.

Solution: $\exists x Q(x) \land P(x)$.

- 8. Let T(x, y) stand for the propositional function x is taller than or the same height as y. Write all of the following propositions as words:
 - (a) $\forall x \forall y T(x, y)$

Solution: For every pair of people x and y, x is taller or the same height as y.

(b) $\forall x \exists y T(x, y)$

Solution: For every person x there is a person y such that x is taller than or the same height as y.

(c) $\exists x \exists y T(x, y)$

Solution: There is a person x and a person y such that x is taller than or the same height as y.

(d) $\exists x \forall y T(x, y)$

Solution: There is a person x such that for every other person y, x is taller than or the same height as y.

- 9. Prove the following claim, or provide counter examples:
 - (a) For all integers m and n, if m and m + n are even then n is even.

Solution: This is true, if m is even then m = 2k for some integer k, if m + n is even then m + n = 2l for some integer l. In particular:

$$m + n = 2l$$
$$2k + n = 2l$$
$$n = 2l - 2k$$
$$n = 2(l - k)$$

l-k is an integer so n is even.

(b) For sets X, Y, and Z, if $X \subseteq Y$ then $Z \setminus Y \subseteq Z \setminus X$.

Solution: This is true, since X is a "smaller" set we are subtracting less. Proof: Choose $a \in Z \setminus Y$, this tells us that $a \in Z$ and $a \notin Y$. Since $X \subseteq Y$ we cannot have $a \in X$ either thus $a \in Z \setminus X$.

(c) For sets X, Y, and Z, $X \times (Y \setminus Z) = (X \setminus Y) \times (X \setminus Z)$.

Solution: This is not true. Choose $X = \{1, 2, 3, 4\}$, $Y = \{3, 4\}$ and $Z = \{1, 2\}$. Then $(3,3) \in X \times (Y \setminus Z)$ but $(3,3) \notin (X \setminus Y) \times (X \setminus Z)$ since $3 \notin X \setminus Y$.

(d) $\forall x \in \mathbb{R}$ if x^2 is irrational then x is irrational.

Solution: We prove this via contrapositive. If x is rational then x^2 is rational. If x is rational then $x = \frac{p}{a}$ then $x^2 = \frac{p^2}{a^2}$ which is rational. This proves the original claim.

(e) $\sqrt[3]{2}$ is irrational.

Solution: This is proved the same way as that $\sqrt{2}$ is irrational: Proof by contradiction, suppose that $\sqrt[3]{2}$ is rational then $\sqrt[3]{2} = \frac{p}{q}$ where p and q share no common factors. Cubing both sides we have that $2 = \frac{p^3}{q^3}$ This means that $p^3 = 2q^3$ which gives that p^3 is even. By previous results in class we know this means that p is even as well. Thus p = 2k for some integer k or $p^3 = 8k^3$. Subbing into our above equality: $8k^3 = 2q^3$ meaning that $q^3 = 4k^3$ meaning that q^3 and thus q is even also. But then p and q share a factor of 2 which is against our assumptions. This is our contradiction so the original claim is true.

(f) For all $x, y \in \mathbb{R}$ if x is rational and y is irrational then xy is irrational.

Solution: This is not true, x = 0 gives that xy = 0 which is rational.

(g) $(X \setminus Y) \cap (Y \setminus X) = \emptyset$ for all set X and Y.

Solution: This is true. If $a \in X \setminus Y$ then $a \in X$ but not in Y. If $b \in Y \setminus X$ then $b \in Y$ but not in X. To prove this is true we use proof by contradiction. Suppose $a \in (X \setminus Y) \cap (Y \setminus X)$ then $a \in X$ and not in Y (from the first part of our intersection) but the second part tells us that $a \in Y$ and not in X a contradiction. Thus the original claim is true.

(h) Let s_1, s_2, \ldots, s_n be any real numbers. We define the average of these numbers as:

$$A = \frac{s_1 + s_2 + \dots + s_n}{n}$$

Suppose there exists an i and a j such that $s_i \neq s_j$ then there must be some k such that $s_k > A$.

Solution: Proof by contradiction. Suppose that if s_1, s_2, \ldots, s_n are any real numbers and there is some *i* and some *j* such that $s_i \neq s_j$ but there is no $s_k > A$. Then either $s_i \neq A$ or $s_j \neq A$, without loss of generality assume that $s_i \neq A$. Then either $s_i > A$ or $s_i < A$. If $s_i > A$ then we are done if not then $s_i < A$ and by our assumption $s_k < A$ for all *k* meaning:

$$s_1 + s_2 + \dots + s_n < nA$$

which contradicts A being our average. Thus it must be that some k has $s_k > A$.

(i) For all sets A, B, and C, $A \subseteq C$ and $B \subseteq C$ if and only if $A \cup B \subseteq C$.

Solution: This is true. If $A \subseteq C$ and $B \subseteq C$ then for all $a \in A$, $a \in C$ and for all $b \in B$, $b \in C$. Thus for all $d \in A \cup B$ either $d \in A$ (meaning $d \in C$) or $d \in B$ (meaning $d \in C$). So we have $A \cup B \subseteq C$.

For the reverse if $A \cup B \subseteq C$ then this means for all $d \in A \cup B$, $d \in C$. Then for all $a \in A$, $a \in A \cup B$ so $a \in C$ so that $A \subseteq C$. Similarly for all $b \in B$, $b \in A \cup B$ so that $b \in C$ so $B \subseteq C$.

(j) For all positive integers n the following holds:

$$\frac{1}{2n} \le \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}$$

Solution: Proof by induction. Base case $n = 1, \frac{1}{2} \leq \frac{1}{2}$. IH: For n we have $\frac{1}{2n} \leq \frac{1 \cdot 3 \cdot 5 \cdots 2n + 1}{2 \cdot 4 \cdot 6 \cdots (2n)}$. We show that the inequality holds for n + 1:

$$\frac{1}{2n+2} \le \frac{1}{2n+2} \cdot \frac{2n+1}{2n}$$

This is because 2n + 1 > 2n so the fraction is greater than 1

$$=\frac{1}{2n}\cdot\frac{2n+1}{2n+2}$$

Just rearranging the fractions...

$$\leq \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots (2n)}\cdot \frac{2n+1}{2n+2}$$

By IH...

$$= \frac{1 \cdot 3 \cdot 5 \cdots (2n-1) \cdot (2n+1)}{2 \cdot 4 \cdot 6 \cdots (2n) \cdot (2n+2)}$$

This closes the induction.

(k) If X_1, X_2, \ldots, X_n and X are sets then:

$$X \cap (X_1 \cup X_2 \cup \dots \cup X_n) = (X \cap X_1) \cup (X \cap X_2) \cup \dots \cup (X \cap X_n)$$

Solution: We prove this by induction. Base case n = 1 then the equality holds trivially. IH: Assume true for n that is $X \cap (X_1 \cup X_2 \cup \cdots \cup X_n) = (X \cap X_1) \cup (X \cap X_2) \cup \cdots \cup (X \cap X_n)$ then we show true for n + 1:

$$X \cap (X_1 \cup X_2 \cup \dots \cup X_n \cup X_{n+1}) = X \cap ((X_1 \cup X_2 \cup \dots \cup X_n) \cup X_{n+1})$$

Let $X_1 \cup X_2 \cup \cdots \cup X_n = S$, and remember our induction hypothesis holds true for any sets

$$= X \cap (S \cup X_{n+1})$$

Then our induction hypothesis gives:

$$= (X \cap S) \cup (X \cap X_{n+1})$$

Expanding S:

$$= (X \cap (X_1 \cup X_2 \cup \dots \cup X_n)) \cup (X \cap X_{n+1})$$

Again our IH:

$$= (X \cap X_1) \cup (X \cap X_2) \cup \dots \cup (X \cap X_n) \cup (X \cap X_{n+1})$$

This closes the induction.

(l) If X_1, X_2, \ldots, X_n and X are sets then:

$$\overline{X_1 \cap X_2 \cap \dots \cap X_n} = \overline{X_1} \cup \overline{X_2} \cup \dots \cup \overline{X_n}$$

Solution: Proof by induction. Base case, n = 1 this is trivially true. IH: Assume true for n that is assume $\overline{X_1 \cap X_2 \cap \cdots \cap X_n} = \overline{X_1} \cup \overline{X_2} \cup \cdots \cup \overline{X_n}$ then we show this holds for n + 1:

$$\overline{X_1 \cap X_2 \cap \dots \cap X_n \cap X_{n+1}} = \overline{A \cap X_{n+1}}$$

Where we let $A = X_1 \cap X_2 \cap \cdots \cap X_n$, now using our induction hypothesis (which holds for any sets)

 $= \overline{A} \cup \overline{X_{n+1}}$

Expanding A:

$$=\overline{X_1\cap X_2\cap\cdots\cap X_n}\cup\overline{X_{n+1}}$$

Using our induction hypothesis again:

$$=\overline{X_1}\cup\overline{X_2}\cup\cdots\cup\overline{X_n}\cup\overline{X_{n+1}}$$

This closes the induction.

10. Let f and g be functions from the positive integers to the positive integers defined by

f(n) = 2n + 1, g(n) = 3n - 1

Find the compositions $f \circ f$, $g \circ g$, $f \circ g$ and $g \circ f$.

Solution:

$$f \circ f(n) = f(f(n))$$

= $f(2n + 1)$
= $2(2n + 1) + 1$
= $4n + 3$
$$g \circ g(n) = g(g(n))$$

= $g(3n - 1)$
= $3(3n - 1) - 1$
= $9n - 4$

 $f \circ g(n) = f(g(n))$ = f(3n - 1)= 2(3n - 1) + 1= 6n - 1 $g \circ f(n) = g(f(n))$ = g(2n + 1)= 3(2n + 1) - 1= 6n + 2

- 11. Each of the following functions is one-to-one and thus is a bijective function from its domain to its image. Find the inverse of the given functions.
 - (a) $f(x) = 4x + 2, x \in \mathbb{R}$.

Solution: $f^{-1}(x) = \frac{x-2}{4}$

(b) $f(x) = 3 \log_2(x), x \in \mathbb{R}^{>0}$.

Solution: $f^{-1}(x) = 2^{\frac{x}{3}}$

(c) $f(x) = 6 + 2^{7x-1}, x \in \mathbb{R}.$

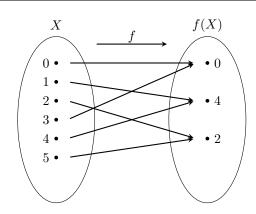
Solution: $f^{-1}(x) = \frac{\log_2(x-6)+1}{7}$

12. Let f be the function from $X = \{0, 1, 2, 3, 4, 5\}$ to X defined by

 $f(x) = 4x \mod 6$

Write f as a set of ordered pairs and draw the arrow diagram for f. Is f injective? Surjective?

Solution: $f = \{(0,0), (1,4), (2,2), (3,0), (4,4), (5,2)\}$ The arrow diagram for this is:



This function is not injective, both 0 and 3 map to 0. This is not surjective since 3 is not hit by any input.

- 13. For the following questions let g be a function from X to Y and let f be a function from Y to Z. For each of the following if the statement is true prove it otherwise proved a counterexample.
 - (a) If g is onto then $f \circ g$ is onto.

Solution: This is not true, let $X = Y = Z = \{1, 2, 3\}$ define f(x) = 1 for all $x \in Y$ and let g(x) = x for all $x \in X$. Then g is onto, but f is not. Then $f \circ g$ is not onto because there is no input which will map to 2 (all inputs eventually go to Rome... I mean 1).

(b) If $f \circ g$ is injective then f is injective.

Solution: This is not true. Consider $Y = Z = \{1, 2, 3\}$ and $X = \{1, 2\}$ and let f(1) = 1, f(2) = 1, and f(3) = 2. f is clearly not injective. Define g(1) = 2 and g(2) = 3. g clearly is injective. Then we have that no two inputs to $f \circ g$ map to the same output, so that $f \circ g$ is injective, but f is not.

(c) If f is one-to-one then $f \circ g$ is one-to-one.

Solution: Again not true. Let $X = Y = Z = \{1, 2, 3\}$ and define f(x) = x for all $x \in Y$ then f is one-to-one. Define g(1) = 1, g(2) = 1, and g(3) = 2. $f \circ g(1) = 1$ and $f \circ g(2) = 1$ meaning that $f \circ g$ is not one-to-one.