Name:_

CSCI 2824 - Discrete Structures Test 1

Grade: _____ /100

1. (10 points) For the following pair of propositions show whether P is logically equivalent to Q:

(a) $P = p \rightarrow q, Q = \neg p \lor q$

(b) $P = p \land q, Q = \neg q \rightarrow p.$

2. (20 points) For the following parts list each set that has the same cardinality as the given set, from the provided list of sets.

 $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Z} \times \mathbb{Z}, \{1,3\}, \{a,7\}, \{1,2,4,5\}, \{1,2,3,4,5\}, \{1,\{2,3\},\{4\}\}, \{7,132,19,\{1\}\}$ (a) *E* - the set of all even integers. (b) [0,1] - all real numbers between 0 and 1, inclusive.

(c) $\{a, b\}$

(d) $\{7, 24, 5\}$

- 3. (10 points) Let A(x, y) be the propositional function x attended y's office hours and E(x) be the propositional function x is enrolled in a discrete mathematics course. Using these and our quantifiers turn the following statements into symbols that they are equivalent to.
 - (a) Brit attended someone's office hours.
 - (b) Every discrete math student attended someone's office hours.

4. (20 points) Prove that $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$ for all sets X and Y.

5. (25 points) Prove that $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

- 6. (5 points) Define what it means that $f: X \to Y$ is a function.
- 7. (10 points) For functions $f: Y \to Z$ and $g: X \to Y$ prove or disprove the following claim: If $f \circ g$ is onto then g is onto.