
Project 1 - 3SAT generator

Due June 28, 2017

1 Background

SAT stands for SATisfiability for a given logical expression. That is, given a
logical formula such as x ∧ y are there logical values (TRUE or FALSE) that
can be assigned to x and y to make the whole expression true?

In this case it is clearly the case, simply make x =TRUE and y =TRUE,
but for more complicated expressions it is not always obvious:

((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∧ x3) ∧ (¬x3 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x1 ∨ (¬x2 ∧ x3))

The goal of a SAT solver is to take an expression as above and determine if
some values for xi make the whole expression TRUE. Allowing arbitrary logical
expression is very annoying, because of the mixed ∧’s and ∨’s. To fix this there
is a standard set. It can be shown that any logical expression can be written
in Conjunctive Normal Form, this process may involve adding extra “dummy”
values, but will always have the same truth value.

Conjunctive Normal Form (CNF) requires that the expression be separated
into clauses, where each variable is ∨’d together and every clause is ∧’d together.
This is complicated to explain but easy to understand through examples. The
above equation is NOT in CNF however the following is, since it is a collection
of clauses (in which variables are only ∨’d together) and each clause is ∧’d
together:

(¬x1 ∨ x3 ∨ x4 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4)

SAT is a very difficult problem to solve very quickly (in general) it is part
of a class of problems known as NP-Complete.

We will be working with 3SAT, which is a “simplification”—technically it is
the same problem, but that is above the topics of this course. The “simplifica-
tion” for 3SAT is that each clause must have EXACTLY 3 variables. So far in
this handout we have NOT seen any 3SAT problems. An example of one is:

(¬x5 ∨ ¬x2 ∨ x1) ∧ (x2 ∨ x5 ∨ ¬x6) ∧ (¬x8 ∨ x1 ∨ x3) ∧ (x9 ∨ ¬x7 ∨ x4)

You’ll notice it is perfectly valid to reuse variables between clauses, in fact if
you didn’t then this would be very easy to solve.

1



2 Project

For this project you will be writing a 3SAT generator, that can also test given
truth values. That is, the goal of this program is to create a general 3SAT
problem with at most 10 variables and 10 clauses. Your program will then print
this logical expression so the user can see it (you will use ∼ as opposed to ¬)
and then ask the user for truth values for each of the variables. Then it will test
whether those truth values make the whole expression TRUE or not. If they
do make the expression TRUE, you should inform the user. If they do not, you
again inform the user AND print the clause which is invalid.

3 Expectations

Each run of the program should randomly choose the number of possible vari-
ables (between 3 and 10 variables is allowed) it should also randomly choose the
number of clauses (between 1 and 10 is allowed). Within a clause, a variable
should not be repeated, ever. That is, (x1∨x1∨x2) is not a valid clause, neither
is (x2∨¬x2∨x3). But of course variables can be repeated between other clauses.

After choosing the number of variables and clauses, each clause should be
generated randomly. You may represent this generation anyway that you like.
The standard way to represent a clause is to use a list (in Python) or an
int[] in C++. For example: (x1 ∨ x2 ∨ x3) can be represented as [1,2,3], and
(¬x2 ∨ x1 ∨ ¬x5) can be represented as [-2,1,-5], that is, negative numbers
represent a negated variable.

One way to randomly generate clauses is for each clause randomly choose a
number between 1 and the number of variables. This selects your xk, then you
should also randomly decide whether or not to negate this variable, you can do
this as a 50/50 chance.

After randomly generating all of the clauses, your program should print this
clause to the screen. Since you cannot directly print ¬ you will use ∼ as an
alternative. Similarly subscripts are not possible, so you will just place numbers
next to an x. You will print something like this:

(∼ x5∨ ∼ x2 ∨ x1) ∧ (x2 ∨ x5∨ ∼ x6) ∧ (∼ x8 ∨ x1 ∨ x3) ∧ (x9∨ ∼ x7 ∨ x4)

That is, you MUST print parentheses and ∨ and ∧, use v and ˆ for these (it
will, ironically, look better printed by your program than by LATEX).

After printing the expression you will ask the user for T/F values for each
variable. You MUST ensure input is correct! If I enter: s, (instead of T/F) then
you should ask again until I successfully choose T/F. However you should allow
upper OR lower case, that is, valid inputs are T,t,F,f. Any other inputs are to
be ignored and you should re-ask.

After asking for user input for EVERY variable, you should evaluate whether
the values that were given do or do not satisfy the generated expression. Then
you should inform the user whether they were correct or not, you may use any
message you like to inform the user. But if they were incorrect you MUST

2



also print the clause that is evaluated to FALSE (and ONLY that clause). It is
possible that many clauses fail, you should print the FIRST clause which fails.

You should not use any external libraries to evaluate the 3SAT expression.
There are many 3SAT solvers in most languages, you should not use these.
Programs that do use them will be penalized, harshly.

Keep in mind the goal of this project is not to solve a 3SAT expression, but
to generate one, and verify a given solution.

4 Deliverables

You need to turn your program into Moodle. You may structure your program
however you desire. Personally I would write this as either 1 Python file or 3
C++ files (one .h file, one .cpp file which contains the implementations of my
functions, and one .cpp file which contains my main method), but as stated do
as you please. Moodle will allow only 1 file submission. However you will need
to submit a few files, including any code files and a README file.

The README file should provide a brief description of your work, describing
in clear English how you solved this project, and any comments you may have
for me (“I got stuck on this part and could not get it to work”, etc).

Since you need to submit at least 2 files, but are only allowed one file upload,
you will need to create a group of files. I recommend creating a tarball. These are
relatively common throughout the programming world, so it may as well learn
it here. tar is a command on Linux which will group files together with no
compression, zip is a command which will compress files, together they form
the tarball. On a Linux machine you can create a tarball with the following
command:

tar -czvf name-of-archive.tar.gz /path/to/directory-or-file

5 Implementation

Personally, I found this to be easier to write in Python than C++, but both were
very doable. Before beginning to write code you should decide on a language
(obviously) and write down a basic structure. You will find it much easier to
write the code if you write the general structure first. Decide what functions
you want, what you want them to do, then write the code.

You may complete this project in any well known language, that I can easily
run on my Linux system. If you want to choose a slightly less well known
language, talk with me first.

If you choose a language other than C/C++, or Python then you will receive
5 extra credit points, but will still be held to the same requirements/standards
as others.

3



6 Examples

The following are examples of my versions of this program running, so that you
can see how the output should be, and how I prompt the user and force correct
input.

Figure 1: First Example

This example is run with my Python solution, I have made my code exe-
cutable, you should do this, but it is not required, if you aren’t sure how to do
this, you should ask, this is something that you should learn.

In this example we can see I repeatedly ask for input for x1 since the initial
inputs are incorrect.

Figure 2: Second Example

This example is my C++ solution.

Figure 3: Third Example

4



Another example of the C++ solution.
This picture is a bit smaller due to the long line. You do not need to add

extra newlines to make the output look better, you can but you don’t need to.
If you do add artificial newlines the output should look pretty, that is, don’t
put a newline in the middle of a clause, do it in between clauses.

7 Final Thoughts

Also worthy of note is that since everything is chosen randomly the situation
where you have chosen to use 7 variables but x5 (for example) does not appear in
the randomly generated expression may occur. This is perfectly fine. This will
happen with some non-zero probability based on the number of clauses there
will be. You may decide how to handle this with respect to input collection. If
you choose to still ask the user for a value of x5 that is fine, if you choose to be
clever and skip values that are not used that is also fine.

Start this project immediately. This project is not conceptually difficult (I
hope!) but there are a lot of details involved. You should start immediately to
run into any issue as soon as possible. If you do run into issues you should be
well aware of the help you can receive. You may work with other students as
much as you would like. HOWEVER you must write your own code. You may
talk with others about the structure of the program. If there is a specific part
of the program you do not how to code you may ask others for examples, but
at the end of the day you must write all of your own code.

You may of course ask me any questions you want and I will be very helpful.
This is expected to be:

1. interesting—the 3SAT problem is a very interesting problem.

2. difficult—handling the details of this program can be very difficult to keep
straight.

3. illuminating—hopefully this helps you play with logical expressions and
gain a deeper understanding. Also determining how to interact with logical
expressions and strings in a program.

5


