
CSCI 2824 - Discrete Structures
Homework 4

You MUST show your work. If you only present answers you will receive minimal credit. This homework
is worth 100pts.

Due: Wednesday July 5
For all of the following questions you are expected to write a program to solve this. If you write a simple,

straight-forward program to solve these, you will eventually solve these. Thus you’ll need to think at least
a little bit about optimization, you should definitely ask questions if you don’t know how to optimize some
of these (it is not expected that you know).

All of these questions come from Project Euler (though I’ve modified some), a website which assigns
various math problems to be solved by a computer. If you like these problems you should check it out!

For this assignment, you should submit your code for each problem, so at least 5 files. However the
Moodle submission will only allow one file, thus you’ll need to make a tarball again. The files that contain
your main method should be named Problemk.[py,cpp,. . . ] where k is the number of the problem.

For this assignment I will require that you include a Makefile, if your code requires any compilation.
Thus languages such as C/C++, Go, Rust, Java,... will require one additional file in tarball. A Makefile
is a file that handles compilation for the user. There are many examples of Makefiles on-line. But if you
have questions on how to make one please ask. When grading this, the grader should only need to un-tar
your file, run make (to compile all files), and then run each file on its own.

Additionally I will require that you submit the files nums and names.txt (that I have uploaded for you).
These files should be included in your tarball so that the grader does not need to manually add them to run
your files.

Since this is a code-writing assignment, there is no opportunity for LATEXextra credit. However if all 5
of your solutions are in a language other than Python, C/C++ then you will get 5 extra credit points.

In the comments for each problem you should have the answer, so I can verify by reading your comments,
in case your code is very slow.

None of these problems is particularly difficult, so I would encourage you to use this time to try a new
language!

1. (10 points) Work out the last 10 (10 least significant) digits of the sum of the 100, 50-digit numbers in
nums.txt

2. (10 points) The Collatz function is defined as followed:

C(n) =

{
n
2 if n is even

3n + 1 if n is odd

Though it has not been proven, every number that you will likely choose to plug into this function will
eventually reach 1, though iteration, for example starting with 13:

13→ 40→ 20→ 10→ 5→ 16→ 8→ 4→ 2→ 1

We can see that this sequence (from 13 to 1) has 10 terms. Your goal is to figure out which number,
under 1 million has the longest chain, between starting value and 1.

Note: once the chain starts, it may go above 1 million, this is fine.

3. (25 points) In class we discussed the Fibonacci sequence defined as:

fn = fn−1 + fn−2; f1 = 1, f2 = 1

Consider only the values of the Fibonacci sequence which do not exceed 4 million, what is the sum of
all the even terms? Even terms meaning terms which are even, not that their index is even.

1



4. (25 points) 2520 is the smallest number which can be divided evenly by each of the numbers between 1
and 10. What is the smallest positive integer that is evenly divisible by all of the integers from 1 to 20?

5. (30 points) Using names.txt a 46K text file containing over five-thousand first names, begin by sorting
it into alphabetical order. Then working out the alphabetical value for each name, multiply this value
by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into
alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list.
So, COLIN would obtain a score of 938 × 53 = 49714. What is the total of all the name scores in the
file?

Note: for this problem we are using the the order as the multiplier, not the index. Thus the first name
will be multiplied by 1, not by 0, etc.

2


