
CSCI 2824 - Discrete Structures
Homework 2

You MUST show your work. If you only present answers you will receive minimal credit. This homework
is worth 100pts.

Due: Wednesday June 21

1. (2 points) Prove that the sum of two odd integers is an even integer.

Solution: Let m,n be odd integers. Then we can write m = 2k + 1, n = 2j + 1 for integers k, j.
Then:

m + n = 2k + 1 + 2j + 1

= 2k + 2j + 1 + 1

= 2(k + j + 1)

= 2p

where p is an integer.

Thus m + n is even.

2. (4 points) Prove that for all real numbers x and y, if xy ≤ 2, then either x ≤
√

2 or y ≤
√

2.

Solution: Proof by contrapositive. That is we prove that if x >
√

2 and y >
√

2 then xy > 2.
Simply multiply the numbers: Since x, y >

√
2 we have that xy >

√
2 ·
√

2. Or more simply, xy > 2.
This proves the original claim that xy ≤ 2 implies that x ≤

√
2 or y ≤

√
2

This can also be proved by contradiction, but you’ll probably just contradict the assumption that
xy ≤ 2, meaning you’re really doing a contrapositive argument.

3. (10 points) Prove that the real numbers have the Archimedean Property. That is given any positive real
numbers x and y prove that there is an integer n such that xn > y.

Solution: Proof by contradiciton. Assume this is not true, and that there are two real numbers
x, y such that for any integer n, xn ≤ y. Equivalently we can write, n ≤ y

x for every integer n. This
provides an upper bound on all integers, which we know is false. This is our contradiction, thus the
Archimedean Property is true.

4. (6 points) Suppose a, b and c are integers. If a2 divides b and b3 divides c, then a6 divides c. [Divides,
is a formal statement in math, x divides y means that y is a multiple of x. For example 5 divides 10,
but 4 does not divide 2. This is often written 5|10, x|y, 4 6 | 2 etc. For this problem it may help to think
in terms of multiples, x|y means that y = kx for some integer k.]

1



Solution: Since a2 divides b means that we can write b = na2 for some integer n. Similarly, since
b3 divides c we can write c = mb3 for some integer m. Combining:

c = mb3

= m(na2)3

= m · n3 · (a2)3

= p · a6

where p is an integer. Thus c is a multiple of a6, or a6 divides c.

5. (7 points) Prove that for all positive integers m,n: 2m + 5n2 = 20 has no solution.

Solution: This solutions is more long than difficult. In order to use positive integers to satisfy the
equation we must have that 1 ≤ m ≤ 10. Note that 0 is NOT positive.

Similarly to satisfy the equation we must have that 1 ≤ n ≤ 2.

However note that when n = 2 then 5n2 = 20 so m = 0, this is not allowed so the ONLY possible
option for n is 1. Thus we must have 2m = 15 (after reducing our equation). This is not possible
for integral m. So no solution exists, with positive integers.

6. (5 points) Prove that that the difference between an irrational number x and a rational number y is
irrational.

Solution: Proof by contradiction. That is suppose the difference between an irrational number x
and a rational number y is rational. Then we have the following circumstance:

Let y = p
q for integers p, q, we can’t write x like this but by our assumption we can write x− y = a

b
for some integers a, b, or :

x− y =
a

b

x− p

q
=

a

b

x =
a

b
+

p

q

And by the proof of Question 1, the sum of two rationals is rational, so that x is rational. This is a
contradiction to our assumption, so it must be the case that the difference x − y is NOT rational,
i.e., irrational.
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7. (4 points) Prove that for all integers n if n3 + 5 is odd then n is even.

Solution: We prove this by contrapostive. That is we prove that if n is odd then n3 + 5 is even. If
n is odd then we can write n = 2k + 1 for some integer k. Then we compute:

n3 + 5 = (2k + 1)3 + 5

= 8k3 + 12k2 + 6k + 1 + 5

= 8k3 + 12k2 + 6k + 6

= 2(4k3 + 6k2 + 3k + 3)

Thus n3 + 5 is even. This proves the original claim that if n3 + 5 is odd then n is even.

8. (8 points) Verify the following equation:

12 − 22 + 32 − · · ·+ (−1)n+1n2 =
(−1)n+1n(n + 1)

2

Solution: We prove this by Induction: Base case: n = 1, 12 = 1(2)
2 = 1 X.

IH: If 12 − 22 + · · ·+ (−1)n+1n2 = (−1)n+1n(n+1)
2 then we show 12 − 22 + · · ·+ (−1)n+2(n + 1)2 =

(−1)n+2(n+1)(n+2)
2 .

For simplicity: We’re trying to show that

n∑
j=1

(−1)j+1j2 =
(−1)n+1n(n + 1)

2
=⇒

n+1∑
j=1

(−1)j+1j2 =
(−1)n+2(n + 1)(n + 2)

2

Lets begin:

n+1∑
j=1

(−1)j+1j2 =

n∑
j=1

(−1)j+1j2 + (−1)n+2(n + 1)2

(by IH:) =
(−1)n+1n(n + 1)

2
+ (−1)n+2(n + 1)2

=
(−1)n+1n(n + 1)

2
+

2(−1)n+2(n + 1)2

2

=
(−1)n+1(n2 + n) + (n2 + 2n + 1)(2)(−1)n+2

2

Re-grouping terms:

=
(−1)n+1n2 + (−1)n+1(2)n2 + (−1)n+1n + (−1)n+2(2)(2n) + (−1)n+2(2)(1)

2
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The next step is kind of involved. We’re using that (−1)n + (−1)n+1 = 0 for all n, since one is −1
and the other is 1. However in our case one of each term (the one with (−1)n+2) has a factor of 2
in front, so it takes over and replaces the zero.

=
(−1)n+2n2 + (−1)n+23n + (−1)n+22

2

=
(−1)n+2(n + 1)(n + 2)

2

9. (6 points) Prove that 7n − 1 is divisible by 6 for all integers n ≥ 1.

Solution: We prove this by induction. Base case: n = 1 gives 7− 1 = 6 clearly 6 | 6.

IH: If 7n − 1 is divisible by 6 we show that 7n+1 − 1 is divisible by 6.

Thus:

7n+1 − 1 = 7n · 7− 1

= 7n · (1 + 6)− 1

= 7n − 1 + 6 · 7n

By IH we have that 7n − 1 = 6k for some integer k.

= 6k + 6 · 7n

= 6(k + 7n)

we see that 7n+1 − 1 = 6p for an integer p. This proves our inductions hypothesis, and closes our
induction.

10. (8 points) Prove the following by cases:

(a)

max{x, y} =
x + y + |x− y|

2

for all real numbers x and y.

Solution: We prove this by cases.

Case 1: x ≥ y. Then max{x, y} = x, and x− y > 0 =⇒ |x− y| = x− y. So:

x + y + |x− y|
2

=
x + y + x− y

2

=
2x

2
= x
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Case 2: x ≤ y. Then max{x, y} = y and x− y < 0 =⇒ |x− y| = −(x− y). So:

x + y + |x− y|
2

=
x + y − (x− y)

2

=
x + y − x + y

2

=
2y

2
= y

In either case we get that

max{x, y} =
x + y + |x− y|

2

proving our claim.

(b)

min{x, y} =
x + y − |x− y|

2

for all real numbers x and y.

Solution: We prove this by cases.

Case 1: x ≥ y. Then min{x, y} = y, and x− y > 0 =⇒ |x− y| = x− y. So:

x + y − |x− y|
2

=
x + y − (x− y)

2

=
x + y − x + y

2

=
2y

2
= y

Case 2: x ≤ y. Then min{x, y} = x and x− y < 0 =⇒ |x− y| = −(x− y). So:

x + y − |x− y|
2

=
x + y + (x− y)

2

=
x + y + x− y

2

=
2x

2
= x

In either case we get that

min{x, y} =
x + y − |x− y|

2

proving our claim.

5



11. (10 points) Verify the inequality:
2n + 1 ≤ 2n, n ≥ 3

Solution: Proof by induction, base case, n = 3: 2 · 3 + 1 = 7 < 8 X.

IH: Assume that the inequality holds for some k ≥ 1 then we show it holds for k + 1:

2(k + 1) + 1 = 2k + 2 + 1

= 2k + 1 + 2

(by IH) < 2k + 2

< 2k+1 since k > 1

This closes the induction.

.

12. (10 points) Show that postage of 24 cents or more can be achieved by using only 5-cent and 7-cent
stamps.

Solution: Proof by (Strong) induction, base cases:

n = 24 : choose 2 5-cent and 2 7-cent stamps

n = 25 : choose 5 5-cent stamps

n = 26 : choose 1 5-cent and 3 7-cent stamps

n = 27 : choose 4 5-cent and 1 7-cent stamps

n = 28 : choose 4 7-cent stamps

IH: Assume that n ≥ 29 and for each k such that 24 ≤ k < n we have shown we can make postage
using only 5-cent and 7-cent stamps. We show that we can make n-cent postage.

By IH we can make (n− 5)-cent postage, now add one more 5-cent stamp.

13. (20 points) Suppose we have two piles of cards containing n cards each. Two players play the following
game. Each player, in turn, chooses one pile and then removes any number of cards from the chosen pile.
The player who removes the last card on the table wins the game. Show the second player can always
win the game. [Note: You need to PROVE the second player can always win. Coming up with a strategy
is a necessary step, but then you’ll need to prove that strategy will always work. Hint: Induction]

Solution: The strategy is for the second player to mimic the move of the first player but in the
other pile. This means the second player will never eliminate a pile before the first, forcing the first
player to eliminate one pile first, so the second can clear the table.

Proof this works (by Induction), base case, n = 1. There are two piles each with one card, when
the first player chooses one pile and removes the only card, the second player will remove the card
from the remaining pile, winning the game.
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IH: Assume n ≥ 1 and for any k with 1 ≤ k < n there is a strategy for the second player to win the
game when there are two piles of k cards.

We show that the second player can also win when there are n cards in each pile: The first player
will choose one pile, and remove c cards from it. The second player will now choose the other pile
and also remove c cards from that.

This is now a game with n−c cards in each pile, by IH the second player now has a winning strategy
and will win.

This closes the induction.
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